Computer Vision AI: The Secret of Successful Contact Centers

Share on facebook
Share on twitter
Share on linkedin
Share on email
Share on google
computer vision ai

As the capabilities of Computer Vision AI grow, contact centers are finding innovative ways to improve the customer service they deliver. This article explains the background before exploring various applications for Computer Vision AI in contact centers.

A new solution for contact centers

Today’s contact centers face a daunting challenge. The growth of the connected device market and the prevalence of online shopping mean that millions of products are now shipped daily,

Online commerce is projected to be worth over $6.5 trillion by 2020 and with 51% of Americans now opting to shop online, the pressure on customer support operations is about to increase exponentially.

The demand for automated solutions

It’s not only about rapidly rising call volumes, but also more complex and varied technical issues. As a result, countless high-tech solutions have emerged over the past decade, creating a buyer’s dilemma for decision makers. Bombarded with buzzwords and ever-conscious of meeting their KPIs, customer experience managers must choose between a dizzying range of automated solutions that promise to reduce Average Handling Time, motivate agents, improve first time resolution rates and enhance customer satisfaction.

However, most of these innovations revolve around language. From speech recognition and voice analytics to neuro-linguistic programming, they seek to solve customers’ problems by telling them what to do. The missing link has always been the visual dimension: the ability to show the customer exactly how to proceed. And that gap was the genesis of the Computer Vision revolution in customer assistance.

What is Computer Vision AI?

Computer Vision is the technology that enables computers to see, recognize and process images in the same way as humans – and then some.

Automatically extracting and analyzing data from both stills and video, Computer Vision gives a machine the power to derive meaning by interpreting the visual data according to sophisticated algorithms built around previous experiences.

As one of the most exciting forms of Artificial Intelligence, Computer Vision applications have already being implemented across a wide range of sectors, enabling enterprise systems to achieve high-level understanding from digital images and then suggest – or even perform – next best actions.

Computer Vision AI comes of age

A watershed in the field occurred in 2015, when Computer Vision overtook humans in the ability to recognize objects, a turning point analogous to the day in 1997 when IBM’s Deep Blue chess computer defeated the legendary grandmaster Garry Kasparov.

That moment opened the world’s eyes to the potential of Artificial Intelligence, and since then the technology has come on in leaps and bounds. However, its full value, while easy for the corporate world to comprehend, was difficult to explain to the layman. The visual dimension – the means by which ordinary people could relate to AI – was always lacking.

Over the past few years, Computer Vision AI has emerged as a key customer-facing technology in both the B2C and B2B realms. From small help desks operated by specialist manufacturers to vast contact centers run by leading telcos and consumer electronics suppliers, end users can now receive faster, more effective service and support from both live human agents and virtual assistants.

Computer Vision AI – Reinventing the Contact Center

Live video calls during which contact center agents assist customers with their issues is the perfect environment for Computer Vision to prove its worth.

Object recognition with Computer Vision

Even before a customer connects with a representative, the technology’s capacity for lightning-fast object recognition enables it to classify the nature of the call, assess its urgency and carry out a series of basic checks.

Computer Vision-powered systems can zero in on objects within stills or video, isolating them from the background. Backed up by sufficiently large data sets, they then recognize the category of a given device, identifying the manufacturer and even the exact model number.

It doesn’t end there. The most advanced Computer Vision systems can now recognize a device’s components and their operational statuses – seeing exactly what the problem is in real time, with accuracy levels of over 95%.

Armed with all this data, a Computer Vision-enabled platform then identifies the correct department and agent, providing a full visual analysis and a suggested fix, based on previous successful resolutions. This information is then relayed to the customer, usually in the form of Augmented Reality instructions overlaid on the user’s mobile screen.

When it comes to gadgets and gizmos, it’s often a case of simple troubleshooting, and showing the customer which buttons to press with simple arrows and boxes is proven to provide more first-time fixes, while boosting customer satisfaction scores.

Image restoration with AI

Real life is seldom neat and tidy. That’s why contact centers need Computer Vision to clean many of the images provided by their customers, eliminating blurring, reflections and shadows. This technique is performed by imaging a point source and using the Point Spread Function (PSF) to restore the lost image information. When a stressed-out customer is trying to show his router to a remote agent, the video image he’s providing isn’t going to win an Oscar. But with real-time image restoration, the contact center agent can literally make the best of a bad situation.

AI facial recognition

We’re all more protective of our data these days, with identity theft still a hot-button issue. That’s why the companies we entrust with our most private information – like banks, medical providers and insurance companies – rely on Computer Vision as a foolproof means of verifying their customers’ identities through facial recognition – even in challenging lighting conditions and from unusual angles.

Computer Vision identifies and describes images

A modern contact center relies on its knowledge base to streamline operations. When a new type of issue has been successfully resolved, the challenge is to make the relevant information readily available across the organization.

By automatically generating textual descriptions of objects or issues identified within images, Computer Vision platforms make it easier for all employees to search the company system and find the exact solution they need. For example, an insurance agent can simply type “fender bender” or “cracked windshield” into the search bar and instantly find relevant images of similar incidents, enabling them to estimate the cost of the damage in a fraction of the time.

Search for similar images with Computer Vision

Visual search engine technology from the likes of Pinterest, Bing, Target, and ASOS now enable us to search for images similar to the ones we already have. It’s hardly surprising that companies which receive millions of images from customers every day have embraced the possibilities. By dropping an image of an unusual error message on a device into a search bar, agents can find the right fix even faster than with text search. When it comes to those common troubleshooting issues – like when a customer has plugged the wrong cable into his new router – it’s a technology that can slash minutes off a call.

Motion estimation

For leading contact centers, it’s not enough to provide a customer with instructions – the agent must also verify that they’ve been carried out successfully. Computer Vision algorithms can now track the changes from one 2D image to another – usually between adjacent frames in a video sequence –  to track a customer’s movements and make sure that they’ve completed the fix correctly. Remote visual assistance gives the agent eyes on everything, but motion estimation essentially gives them the ability to guide a customer’s every move – giving the agent hands-on problem-solving abilities.

Visualizing the future of Computer Vision in contact centers

In the here and now, Computer Vision has become a must-have technology for the contact centers of the world’s top brands, routing customer enquiries and assisting agents with decision support tools.

But with customer experience advancing rapidly towards full self-service as standard, we’ll soon be interacting with virtual assistants that can visually guide us towards self-resolution of all our tech issues.

Andrew Mort, Content Manager

Andrew Mort, Content Manager

Andrew Mort brings extensive experience of writing compelling B2B and B2C copy, including press releases, thought leadership articles and marketing content.


Innovative Help Desk Solutions That Improve Your Customer’s Experience
Contact Center

Innovative Help Desk Solutions That Improve Your Customer’s Experience

ContentsThe Importance of Customer ExperienceCustomer Self-Service: an ideal solution for …

3 Methods to Capture the Promise of Technology in Call Center BPO Offerings
Contact Center

3 Methods to Capture the Promise of Technology in Call Center BPO Offerings

Learn how some of the world’s leading BPOs have turned the threat of a new BPO technology trend into a strategic secret weapon.

Call Center Mistakes to Avoid to Retain Customers and Improve their Experience
Contact Center

Call Center Mistakes to Avoid to Retain Customers and Improve their Experience

A positive experience is a key part of customer loyalty. Steer clear of these 10 call center mistakes that are turning your customers away.