Contents
Imagine if a technician somehow knew that one of your home devices was going to fail soon, and showed up with the correct tools and parts to fix it at just the right moment. How much time, money, and effort would that save? While it may sound like a fantasy, AI predictive maintenance technology is paving the way for that exact scenario. Read on to discover how it all works, with examples of companies already using IoT predictive maintenance.
A study by The Wall Street Journal and Emerson concluded that unplanned downtime – 42% of which is a result of equipment failure – costs manufacturers an estimated $50 billion per year. The costs associated with downtime continue even after production has resumed.
What is Predictive Maintenance?
Predictive maintenance refers to the monitoring and collection of data on the operational conditions of a product or service, allowing companies to foresee possible outages or failures. This enables them to address any issues before they cause damage.
Data from the US Department of Energy indicates that predictive maintenance is highly cost-effective, delivering:
- a 1,000% increase in ROI
- a 25-30% reduction in maintenance costs
- 70-75% fewer breakdowns
- a 35-45% reduction in downtime
Predictive Maintenance Examples
UPS reports that it has already saved millions of dollars by implementing a predictive maintenance solution that reduces delivery truck breakdowns.
ThyssenKrupp describes how its predictive maintenance solution has dramatically increased elevator availability by employing real-time diagnostics that reduce out-of-service time.
Cisco, meanwhile, uses predictive maintenance to optimize network performance and carry out faster troubleshooting.
IoT Predictive Maintenance Applied to B2C
While the concept of predictive maintenance has been around for decades, it is only recently that advances in AI have enabled enterprises to take full advantage of the possibilities – and now, largely thanks to the IoT, the principles from industry are being applied to the B2C realm.
What is IoT?
The Internet of Things refers to a network of physical objects or “things” embedded with smart technology, enabling them to collect and exchange data. The number of devices connected to the IoT is expected to hit 22 billion by 2025.
This proliferation of technology has been primarily driven by the widespread adoption and deployment of sensors and smart devices, advanced analytics and Artificial Intelligence.
These enablers provide businesses with endless opportunities for real-time data-based insights that make it easier to predict when consumer devices will fail. These insights also enable businesses to provide proactive customer assistance that results in higher customer satisfaction.
The Pillars of AI Predictive Maintenance
Companies can employ numerous non-invasive AI-based methods in their predictive maintenance strategies.
Sound-Based Predictive Maintenance
Through the use of AI, sounds can now be analyzed to detect machine failure, since moving parts grind against each other creating friction and noise. These failing components can be identified at an early stage before they cause major issues.
OneWatt uses its Embedded Acoustic Recognition Sensors (EARS) device to “listen” to motors, detecting and predicting faults before they happen. Mueller Industries also uses a predictive maintenance solution based on sound analysis. Any change in the tone or vibration level is analyzed in real time to check whether it may be a sign of impending malfunction.
Predictive Maintenance Data Analytics
The vast amounts of information collected from connected devices across the IoT every second of the day provide a deep data pool that can be plumbed for actionable intelligence that enables IoT predictive maintenance.
For example, Thermoplan’s smart coffee machines monitor customer data in real time, including statistics about the amount and types of coffee used, and actual cleaning cycles compared to recommended intervals, enabling effective predictive maintenance analytics. The same technique can be used across the entire IoT spectrum, from smart home appliances to automotive analytics and beyond.
Vision-Based Predictive Analytics
Computer Vision is a field of artificial intelligence that trains computers to interpret and understand the world around them. Using digital images from cameras and videos alongside deep learning models, machines can accurately identify and classify objects and then react to what they “see.”
FANUC, for instance, developed a software program that collects images from cameras attached to robots, and then sends them to the cloud for processing in order to identify potential production problems before they occur.
TechSee’s Computer Vision platform, on the other hand, enables automatic visual identification of consumer devices and their issues from still images or video in order to provide proven resolutions, enabling proactive customer assistance.
The Benefits of AI Predictive Maintenance in B2C
The growing number of IoT predictive maintenance tools and technologies has greatly benefitted several aspects of B2C services.
Lengthening Equipment Life
Installing a smart thermostat that auto-regulates and notifies homeowners when it senses anomalies goes a long way toward extending the lifespan of a customer’s HVAC system, for example.
Reducing Truck Rolls
Visual Assistance uses screen-based technology that allows live agents or automated self-service assistants to see the customer’s physical environment via their smart device, identifying any issues, enabling better remote resolution and reducing the need for truck rolls, where technicians are dispatched to a customer’s home or workplace.
Avoiding Product Returns
A 2019 customer experience survey found that 72% of customers believe proactive customer assistance would dissuade them from returning a product they found difficult to install or operate.
Avoiding Downtime
Volvo’s Early Warning System uses real-time data to predict each part’s breakdown rate and notifies customers when their vehicles need to be serviced and what parts need to be repaired or replaced before they break.
Reducing Potential Safety Hazards
Integrating predictive analytics with data from various sources such as SCADA, CIS, EAM-GIS, weather channels and online monitoring systems enables utility companies to proactively address possible safety risks.
Improving Customer Satisfaction
Consumers expect to be notified about interruptions of service, device malfunctions, warranty expirations or billing hiccups. Collecting and proactively acting on data insights helps achieve improved customer satisfaction.
Predictive Maintenance: Endless Possibilities
Artificial Intelligence has made it possible for businesses to harness the principles of predictive maintenance widely used in industry to assist their customers. In the IoT era, when the collection and analysis of huge volumes of data is fast becoming standard practice, it’s no surprise that Deloitte reports that “the Internet of Things (IoT) is perhaps the biggest piece of the predictive maintenance puzzle.”
The addition of AI capabilities enables companies to predict not only the life of devices, but identify how they can use data to positively affect customer experience. Integrating predictive maintenance with contact center operations to provide proactive customer assistance delivers a resounding win-win.